From a8535a388b0a69f546e006b425c53edc34765c17 Mon Sep 17 00:00:00 2001 From: Christophe Geuzaine <cgeuzaine@uliege.be> Date: Tue, 3 Mar 2020 08:17:49 +0100 Subject: [PATCH] Update floating.pro --- ElectrostaticsFloating/floating.pro | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/ElectrostaticsFloating/floating.pro b/ElectrostaticsFloating/floating.pro index 290bba9..d51276b 100644 --- a/ElectrostaticsFloating/floating.pro +++ b/ElectrostaticsFloating/floating.pro @@ -144,12 +144,12 @@ FunctionSpace { carried by that electrode. Indeed, let us consider the electrostatic weak formulation derived in Tutorial 1: find v in Hgrad_v_Ele such that - (epsilon grad v, grad v')_Vol_Ele + (n . (epsilon grad v), v')_Bnd_Vol_Ele = 0 + (epsilon grad v, grad v')_Vol_Ele - (n . (epsilon grad v), v')_Bnd_Vol_Ele = 0 holds for all test functions v'. When the test-function v' is BF_electrode, the boundary term reduces to - (n . (epsilon grad v), BF_electrode)_Sur_Electrodes_Ele. + -(n . (epsilon grad v), BF_electrode)_Sur_Electrodes_Ele. Since BF_electrode == 1 on the electrode, the boundary term is actually simply equal to the integral of (n . epsilon grad v) on the electrode, -- GitLab