diff --git a/ElectrostaticsFloating/floating.pro b/ElectrostaticsFloating/floating.pro index 290bba93bf22ffa08f5d1c74f8e8b757b8b756c0..d51276be8812927e1eab539e40f77b3d18d860ed 100644 --- a/ElectrostaticsFloating/floating.pro +++ b/ElectrostaticsFloating/floating.pro @@ -144,12 +144,12 @@ FunctionSpace { carried by that electrode. Indeed, let us consider the electrostatic weak formulation derived in Tutorial 1: find v in Hgrad_v_Ele such that - (epsilon grad v, grad v')_Vol_Ele + (n . (epsilon grad v), v')_Bnd_Vol_Ele = 0 + (epsilon grad v, grad v')_Vol_Ele - (n . (epsilon grad v), v')_Bnd_Vol_Ele = 0 holds for all test functions v'. When the test-function v' is BF_electrode, the boundary term reduces to - (n . (epsilon grad v), BF_electrode)_Sur_Electrodes_Ele. + -(n . (epsilon grad v), BF_electrode)_Sur_Electrodes_Ele. Since BF_electrode == 1 on the electrode, the boundary term is actually simply equal to the integral of (n . epsilon grad v) on the electrode,