diff --git a/Magnetodynamics/transfo.pro b/Magnetodynamics/transfo.pro
index 026b91dc2a0f9ebf56becea298364419fa5f53ae..f0fb862f5161ebe7d623bc5db1eafcced9cb20ef 100644
--- a/Magnetodynamics/transfo.pro
+++ b/Magnetodynamics/transfo.pro
@@ -3,7 +3,6 @@
 
    Features:
    - Use of a generic template formulation library
-   - Frequency- and time-domain dynamic solutions
    - Circuit coupling used as a black-box (see Tutorial 8 for details)
 
    To compute the solution in a terminal:
@@ -17,13 +16,9 @@
 Include "transfo_common.pro";
 
 DefineConstant[
-  type_Conds = {2, Choices{1 = "Massive", 2 = "Coil"}, Highlight "Blue",
+  ConductorType = {2, Choices{1 = "Massive", 2 = "Coil"}, Highlight "Blue",
     Name "Parameters/01Conductor type"}
-  type_Source = {2, Choices{1 = "Current", 2 = "Voltage"}, Highlight "Blue",
-    Name "Parameters/02Source type"}
-  type_Analysis = {1, Choices{1 = "Frequency-domain", 2 = "Time-domain"}, Highlight "Blue",
-    Name "Parameters/03Analysis type"}
-  Freq = {50, Min 0, Max 1e3, Step 1,
+  Freq = {1, Min 0, Max 1e3, Step 1,
     Name "Parameters/Frequency"}
 ];
 
@@ -43,147 +38,98 @@ Group {
   // Abstract regions that will be used in the "Lib_Magnetodynamics2D_av_Cir.pro"
   // template file included below;
   Vol_Mag = Region[{Air, Core, Coils}]; // full magnetic domain
-  If (type_Conds == 1)
+  If (ConductorType == 1)
     Vol_C_Mag = Region[{Coils}]; // massive conductors
-  ElseIf (type_Conds == 2)
+  ElseIf (ConductorType == 2)
     Vol_S_Mag = Region[{Coils}]; // stranded conductors (coils)
   EndIf
 }
 
 Function {
   mu0 = 4e-7*Pi;
-
+  mur_Core = 1000;
   mu[Air] = 1 * mu0;
-
-  mur_Core = 100;
   mu[Core] = mur_Core * mu0;
-
   mu[Coils] = 1 * mu0;
-  sigma[Coils] = 1e7;
-
-  // For a correct definition of the voltage
-  CoefGeo = thickness_Core;
+  nu[] = 1 / mu[];
 
-  // To be defined separately for each coil portion
-  Sc[Coil_1_P] = SurfaceArea[];
-  SignBranch[Coil_1_P] = 1; // To fix the convention of positive current (1:
-                            // along Oz, -1: along -Oz)
+  sigma[Coils] = 1e7;
 
-  Sc[Coil_1_M] = SurfaceArea[];
+  // To be defined separately for each coil portion, to fix the convention of
+  // positive current (1: along Oz, -1: along -Oz)
+  SignBranch[Coil_1_P] = 1;
   SignBranch[Coil_1_M] = -1;
-
-  Sc[Coil_2_P] = SurfaceArea[];
   SignBranch[Coil_2_P] = 1;
-
-  Sc[Coil_2_M] = SurfaceArea[];
   SignBranch[Coil_2_M] = -1;
 
-  // Number of turns (same for PLUS and MINUS portions) (half values because
-  // half coils are defined)
-  Ns[Coil_1] = 1;
-  Ns[Coil_2] = 1;
-
-  // Global definitions (nothing to change):
-
-  // Current density in each coil portion for a unit current (will be multiplied
-  // by the actual total current in the coil)
-  js0[Coils] = Ns[]/Sc[] * Vector[0,0,SignBranch[]];
-  CoefGeos[Coils] = SignBranch[] * CoefGeo;
+  If(ConductorType == 2)
+    // Number of turns (same for PLUS and MINUS portions) (half values because
+    // half coils are defined)
+    Ns[Coil_1] = 100;
+    Ns[Coil_2] = 200;
+
+    // To be defined separately for each coil portion:
+    Sc[Coil_1_P] = SurfaceArea[];
+    Sc[Coil_1_M] = SurfaceArea[];
+    Sc[Coil_2_P] = SurfaceArea[];
+    Sc[Coil_2_M] = SurfaceArea[];
+
+    // Current density in each coil portion for a unit current (will be
+    // multiplied by the actual total current in the coil), in the case of
+    // stranded conductors
+    js0[Coils] = Ns[] / Sc[] * Vector[0, 0, SignBranch[]];
+  EndIf
 
-  // The reluctivity will be used
-  nu[] = 1/mu[];
+  // For a correct definition of the voltage
+  CoefGeos[Coils] = SignBranch[] * thickness_Core;
 }
 
-If(type_Analysis == 1)
-  Flag_FrequencyDomain = 1;
-Else
-  Flag_FrequencyDomain = 0;
-EndIf
-
-If (type_Source == 1) // current
-
-  Flag_CircuitCoupling = 0;
-
-ElseIf (type_Source == 2) // voltage
-
-  // PLUS and MINUS coil portions to be connected in series, with applied
-  // voltage on the resulting branch
-  Flag_CircuitCoupling = 1;
-
-  // Here is the definition of the circuits on primary and secondary sides:
-  Group {
-    // Empty Groups to be filled
-    Resistance_Cir  = Region[{}];
-    Inductance_Cir  = Region[{}] ;
-    Capacitance_Cir = Region[{}] ;
-    SourceV_Cir = Region[{}]; // Voltage sources
-    SourceI_Cir = Region[{}]; // Current sources
-
-    // Primary side
-    E_in = Region[10001]; // arbitrary region number (not linked to the mesh)
-    SourceV_Cir += Region[{E_in}];
-    R_in = Region[10002]; // arbitrary region number (not linked to the mesh)
-    Resistance_Cir += Region[{R_in}];
-
-    // Secondary side
-    R_out = Region[10101]; // arbitrary region number (not linked to the mesh)
-    Resistance_Cir += Region[{R_out}];
-  }
-
-  Function {
-    deg = Pi/180;
-    // Input RMS voltage (half of the voltage because of symmetry; half coils
-    // are defined)
-    val_E_in = 1.;
-    phase_E_in = 90 *deg; // Phase in radian (from phase in degree)
-
-    // High value for an open-circuit test; Low value for a short-circuit test;
-    // any value in-between for any charge
-    Resistance[R_out] = 1e6;
+// We will use a circuit coupling to connect the PLUS and MINUS portions of the
+// coil in series, for both the primary and secondary. We will then apply a
+// voltage source (with a small resistance in series) on the resulting branch on
+// the primary, and connect a resistive load on the resulting branch on the
+// secondary.
+Flag_CircuitCoupling = 1;
 
-    // End-winding primary winding resistance for more realistic primary coil
-    // model
-    Resistance[R_in] = 1;
-  }
-
-  Constraint {
-
-    { Name Current_Cir ;
-      Case {
-      }
-    }
-
-    { Name Voltage_Cir ;
-      Case {
-        { Region E_in; Value val_E_in; TimeFunction F_Cos_wt_p[]{2*Pi*Freq, phase_E_in}; }
-      }
-    }
+// Note that the voltage will not be equally distributed in the PLUS and MINUS
+// parts, which is the reason why we must apply the total voltage through a
+// circuit -- and we cannot simply use a current source like in Tutorial 7a.
 
-    { Name ElectricalCircuit ; Type Network ;
-      Case Circuit_1 {
-        // PLUS and MINUS coil portions to be connected in series, together with
-        // E_in (an additional resistor should be defined to represent the
-        // Coil_1 end-winding (not considered in the 2D model))
-        { Region E_in; Branch {1,4}; }
-        { Region R_in; Branch {4,2}; }
-
-        { Region Coil_1_P; Branch {2,3} ; }
-        { Region Coil_1_M; Branch {3,1} ; }
-      }
-      Case Circuit_2 {
-        // PLUS and MINUS coil portions to be connected in series, together with
-        // R_out (an additional resistor should be defined to represent the
-        // Coil_2 end-winding (not considered in the 2D model))
-        { Region R_out; Branch {1,2}; }
-
-        { Region Coil_2_P; Branch {2,3} ; }
-        { Region Coil_2_M; Branch {3,1} ; }
-      }
-    }
-
-  }
+// Here is the definition of the circuits on primary and secondary sides:
+Group {
+  // Empty Groups to be filled
+  Resistance_Cir  = Region[{}]; // all resistances
+  Inductance_Cir  = Region[{}] ; // all inductances
+  Capacitance_Cir = Region[{}] ; // all capacitances
+  SourceV_Cir = Region[{}]; // all voltage sources
+  SourceI_Cir = Region[{}]; // all current sources
+
+  // Primary side
+  E_in = Region[10001]; // arbitrary region number (not linked to the mesh)
+  SourceV_Cir += Region[{E_in}];
+  R_in = Region[10002]; // arbitrary region number (not linked to the mesh)
+  Resistance_Cir += Region[{R_in}];
+
+  // Secondary side
+  R_out = Region[10101]; // arbitrary region number (not linked to the mesh)
+  Resistance_Cir += Region[{R_out}];
+}
 
-EndIf
+Function {
+  deg = Pi/180;
+  // Input RMS voltage (half of the voltage because of symmetry; half coils
+  // are defined)
+  val_E_in = 1.;
+  phase_E_in = 90 *deg; // Phase in radian (from phase in degree)
+
+  // High value for an open-circuit test; Low value for a short-circuit test;
+  // any value in-between for any charge
+  Resistance[R_out] = 1e6;
+
+  // End-winding primary winding resistance for more realistic primary coil
+  // model
+  Resistance[R_in] = 1e-3;
+}
 
 Constraint {
   { Name MagneticVectorPotential_2D;
@@ -193,17 +139,46 @@ Constraint {
   }
   { Name Current_2D;
     Case {
-     If (type_Source == 1)
-      // Current in each coil (same for PLUS and MINUS portions)
-       { Region Coil_1; Value 1; TimeFunction F_Sin_wt_p[]{2*Pi*Freq, 0};  }
-      { Region Coil_2; Value 0; }
-     EndIf
     }
   }
   { Name Voltage_2D;
     Case {
     }
   }
+  { Name Current_Cir ;
+    Case {
+    }
+  }
+  { Name Voltage_Cir ;
+    Case {
+      { Region E_in; Value val_E_in;
+        // F_Cos_wt_p[] is a built-in function with two parameters (w and p),
+        // that can be used to evaluate cos(w * t + p) in both frequency- and
+        // time-domain
+        TimeFunction F_Cos_wt_p[]{2*Pi*Freq, phase_E_in}; }
+    }
+  }
+  { Name ElectricalCircuit ; Type Network ;
+    Case Circuit_1 {
+      // PLUS and MINUS coil portions to be connected in series, together with
+      // E_in; an additional resistor is defined in series to represent the
+      // Coil_1 end-winding, which is not considered in the 2D model.
+      { Region E_in; Branch {1,4}; }
+      { Region R_in; Branch {4,2}; }
+
+      { Region Coil_1_P; Branch {2,3} ; }
+      { Region Coil_1_M; Branch {3,1} ; }
+    }
+    Case Circuit_2 {
+      // PLUS and MINUS coil portions to be connected in series, together with
+      // R_out (an additional resistor could be defined to represent the Coil_2
+      // end-winding - but we can directly add it to R_out as well)
+      { Region R_out; Branch {1,2}; }
+
+      { Region Coil_2_P; Branch {2,3} ; }
+      { Region Coil_2_M; Branch {3,1} ; }
+    }
+  }
 }
 
 Include "Lib_Magnetodynamics2D_av_Cir.pro";
@@ -214,40 +189,19 @@ PostOperation {
       Print[ j, OnElementsOf Region[{Vol_C_Mag, Vol_S_Mag}], Format Gmsh, File "j.pos" ];
       Print[ b, OnElementsOf Vol_Mag, Format Gmsh, File "b.pos" ];
       Print[ az, OnElementsOf Vol_Mag, Format Gmsh, File "az.pos" ];
-
-    If (type_Analysis == 1) // frequency domain
-      If (type_Source == 1) // current
-        // In text file UI.txt: voltage and current for each coil portion (note
-        // that the voltage is not equally distributed in PLUS and MINUS
-        // portions, which is the reason why we must apply the total voltage
-        // through a circuit -> type_Source == 2)
-        Echo[ "Coil_1_P", Format Table, File "UI.txt" ];
-        Print[ U, OnRegion Coil_1_P, Format FrequencyTable, File > "UI.txt" ];
-        Print[ I, OnRegion Coil_1_P, Format FrequencyTable, File > "UI.txt"];
-        Echo[ "Coil_1_M", Format Table, File > "UI.txt" ];
-        Print[ U, OnRegion Coil_1_M, Format FrequencyTable, File > "UI.txt" ];
-        Print[ I, OnRegion Coil_1_M, Format FrequencyTable, File > "UI.txt"];
-
-        Echo[ "Coil_2_P", Format Table, File > "UI.txt" ];
-        Print[ U, OnRegion Coil_2_P, Format FrequencyTable, File > "UI.txt" ];
-        Print[ I, OnRegion Coil_2_P, Format FrequencyTable, File > "UI.txt"];
-        Echo[ "Coil_2_M", Format Table, File > "UI.txt" ];
-        Print[ U, OnRegion Coil_2_M, Format FrequencyTable, File > "UI.txt" ];
-        Print[ I, OnRegion Coil_2_M, Format FrequencyTable, File > "UI.txt"];
-
-      ElseIf (type_Source == 2)
-        // In text file UI.txt: voltage and current of the primary coil (from E_in)
-        // (real and imaginary parts!)
+      If (Flag_FrequencyDomain)
+        // In text file UI.txt: voltage and current of the primary coil (from
+        // E_in) (real and imaginary parts!)
         Echo[ "E_in", Format Table, File "UI.txt" ];
         Print[ U, OnRegion E_in, Format FrequencyTable, File > "UI.txt" ];
         Print[ I, OnRegion E_in, Format FrequencyTable, File > "UI.txt"];
 
-        // In text file UI.txt: voltage and current of the secondary coil (from R_out)
+        // In text file UI.txt: voltage and current of the secondary coil (from
+        // R_out)
         Echo[ "R_out", Format Table, File > "UI.txt" ];
         Print[ U, OnRegion R_out, Format FrequencyTable, File > "UI.txt" ];
         Print[ I, OnRegion R_out, Format FrequencyTable, File > "UI.txt"];
       EndIf
-    EndIf
     }
   }
 }