diff --git a/HyperElasticity/beam.pro b/HyperElasticity/beam.pro
index 00fab2186fa05757f02b51c9077cf34dd9619165..2afda84b22a1e312638bb06e77ee7785849545de 100644
--- a/HyperElasticity/beam.pro
+++ b/HyperElasticity/beam.pro
@@ -4,8 +4,8 @@ DefineConstant[
 ];
 
 Group {
-  Left = Region[{1}]; 
-  Top = Region[{2}]; 
+  Left = Region[{1}];
+  Top = Region[{2}];
   Right = Region[{3}];
   Domain_Mecha = Region[{100}]; // Mechanical domain
 }
@@ -14,11 +14,11 @@ Flag_ExternalForce = 0;
 
 Function {
   DefineFunction[ FT_F, PK2, C_Tot_xx, C_Tot_xy, C_Tot_xz, C_Tot_yx, C_Tot_yy, C_Tot_yz, C_Tot_zx, C_Tot_zy, C_Tot_zz,  E_g, nu_g];
-  
+
   // 1. Parameters of the problem
   //=============================
-  E  = 771.0e6; 
-  nu = 0.29; 
+  E  = 771.0e6;
+  nu = 0.29;
 
   //Lame parameters
   //===============
@@ -44,12 +44,12 @@ Function {
   v_TS[] = $var_TS;
   num_steps = 32;
   theta_value = 1.0;
-  
+
   // Definition of parameters of the Dirichlet BCs, the dynamic problem and the external force
   //==========================================================================================
 
-    force_amplitude = 1.8e03;
-    force_ext[] = Vector[0., force_amplitude, 0.0];    
+    force_amplitude = 1.8e8;
+    force_ext[] = Vector[0., force_amplitude, 0.0];
 }
 
 //Include "smp_stent_KMat_Elasticity.pro";
@@ -73,18 +73,18 @@ Function {
 
   // 3. Kinetic information : second Piola Kirchhoff [PK2] stresses
   //===============================================================
-  // Green Lagrange strain measure GL = E = 0.5 * (C - I) and the 2nd Piola-Kirchoff stress 
+  // Green Lagrange strain measure GL = E = 0.5 * (C - I) and the 2nd Piola-Kirchoff stress
   //=======================================================================================
   FT_F[] = Transpose[$1] * $1; // C = (F^T * F)
   GL[] = 0.5 * (FT_F[$1] - TensorDiag[1.0, 1.0, 1.0]);
   GL_Trace[] = (CompXX[GL[$1]] + CompYY[GL[#1]] + CompZZ[GL[#1]]) ;
-  PK2[] = (lambda * GL_Trace[$1] * TensorDiag[1.0, 1.0, 1.0] + 2 * mu * GL[$1]); 
+  PK2[] = (lambda * GL_Trace[$1] * TensorDiag[1.0, 1.0, 1.0] + 2 * mu * GL[$1]);
 
   // 4. The nonlinear right hand side
   //=================================
   //RHS[] = PK2[$1] * Transpose[$1]; // The first Piola Kirchhoff : P = S * F^T
   RHS[] = $1 * PK2[$1]; // The first Piola Kirchhoff : P = F S
-  
+
   // x
   P~{1}[] = Vector[CompXX[RHS[$1#1]], CompXY[RHS[#1]], CompXZ[RHS[#1]] ];
   // y
@@ -120,7 +120,7 @@ Function {
 
 
 
-    
+
   // The material stiffness
   //========================
   // xx
@@ -213,7 +213,7 @@ Function {
                                     CompZZ[#1] * CompZX[#1],
                                     CompZZ[#1] * CompZY[#1],
                                     CompZX[#1] * CompZX[#1]     + CompZY[#1] * CompZY[#1]     + 2 * CompZZ[#1] * CompZZ[#1] ];
-  
+
   // 5.2.2. Material stiffness - the part resulting from "lambda" : C_Mat_lambda_ij
   //===============================================================================
   // xx
@@ -252,7 +252,7 @@ Function {
   C_Mat_lambda~{3}~{3}[] = lambda * Tensor[ CompZX[$1#1] * CompZX[#1],   CompZX[#1] * CompZY[#1],   CompZX[#1] * CompZZ[#1],
                                             CompZY[#1] * CompZX[#1],   CompZY[#1] * CompZY[#1],   CompZY[#1] * CompZZ[#1],
                                             CompZZ[#1] * CompZX[#1],   CompZZ[#1] * CompZY[#1],   CompZZ[#1] * CompZZ[#1]];
-  
+
   // 5.2. Total material stiffness : C_Mat_ij = C_Mat_lambda_ij +  C_Mat_mu_ij
   //==========================================================================
   For i In {1:3}
@@ -266,9 +266,9 @@ Function {
 Function {
   // 5.3 Total stiffness : C_Mat_ij +  C_Geo_ij
   //===========================================
-  For i In {1:3} 
+  For i In {1:3}
     For j In {1:3}
-      C_Tot~{i}~{j}[] =  C_Mat~{i}~{j}[$1] + C_Geo~{i}~{j}[$1];      
+      C_Tot~{i}~{j}[] =  C_Mat~{i}~{j}[$1] + C_Geo~{i}~{j}[$1];
     EndFor
   EndFor
 }
@@ -308,7 +308,7 @@ Resolution {
       InitSolution[Sys_Mec];
       Evaluate[ $var_DTime = period/(num_steps)];
       Evaluate[ $var_Dt_Max = period/(num_steps)];
-        
+
       TimeLoopTheta[t_0, 1.0 * t_end, dtime[], theta_value]{ //TimeLoopNewmark[t_0, t_end, dtime[], beta, gamma] {
 
         Generate[Sys_Mec]; Solve[Sys_Mec]; Evaluate[ $syscount = $syscount + 1 ];
@@ -346,7 +346,7 @@ Resolution {
 }
 
 PostOperation {
-  { Name Mec ; NameOfPostProcessing Total_Lagrangian; 
+  { Name Mec ; NameOfPostProcessing Total_Lagrangian;
     Operation {
       Print[ u, OnElementsOf Domain_Mecha, File "res/u.pos"] ;
 
@@ -375,6 +375,6 @@ PostOperation {
 
 DefineConstant[
   R_ = {"Mec_SMP", Name "GetDP/1ResolutionChoices", Visible 0},
-  C_ = {"-solve -bin -v 3 -v2", Name "GetDP/9ComputeCommand", Visible 0},
+  C_ = {"-solve -bin -v 3 -v2 -pos", Name "GetDP/9ComputeCommand", Visible 0},
   P_ = { "", Name "GetDP/2PostOperationChoices", Visible 0}
 ];