diff --git a/Electrostatics/microstrip.pro b/Electrostatics/microstrip.pro
index e511520f1767ce00331bb1ad778c56ef71e201b3..7b152d65acb6b445a9ead1a20bb15163311ef063 100644
--- a/Electrostatics/microstrip.pro
+++ b/Electrostatics/microstrip.pro
@@ -52,19 +52,19 @@ Group {
   /* We now define abstract regions to be used below in the definition of the
      scalar electric potential formulation:
 
-     Vol_Ele        : volume where -Div(epsilon Grad v) = 0 is solved
-     Sur_Neumann_Ele: surface where non homogeneous Neumann boundary conditions
-                      (on n.d == epsilon n.Grad v) are imposed
+     Vol_Ele    : volume where -Div(epsilon Grad v) = 0 is solved
+     Sur_Neu_Ele: surface where non homogeneous Neumann boundary conditions
+                  (on n.d == epsilon n.Grad v) are imposed
 
      Vol_xxx groups contain only volume elements of the mesh (triangles here).
      Sur_xxx groups contain only surface elements of the mesh (lines here).
 
      Since there are no non-homogeneous Neumann conditions in the model,
-     Sur_Neumann_Ele is defined as empty.
+     Sur_Neu_Ele is defined as empty.
      */
 
   Vol_Ele = Region[ {Air, Diel1} ];
-  Sur_Neumann_Ele = Region[ {} ];
+  Sur_Neu_Ele = Region[ {} ];
 }
 
 Function {
@@ -99,7 +99,7 @@ Group{
      both volume and surface regions. Hence the use of the prefixes Vol_, Sur_
      and Dom_ to avoid confusions.*/
 
-  Dom_Hgrad_v_Ele =  Region[ {Vol_Ele, Sur_Neumann_Ele} ];
+  Dom_Hgrad_v_Ele =  Region[ {Vol_Ele, Sur_Neu_Ele} ];
 }
 
 FunctionSpace {
diff --git a/ElectrostaticsFloating/floating.pro b/ElectrostaticsFloating/floating.pro
index b099cffcc058d652c6f13b65c40f0f4010b9dc0f..5b668d5050011cb30216d21a6419234d2a707767 100644
--- a/ElectrostaticsFloating/floating.pro
+++ b/ElectrostaticsFloating/floating.pro
@@ -57,12 +57,12 @@ Group {
   /* Abstract regions:
 
      Vol_Ele            : volume where -Div(epsilon Grad v) = 0 is solved
-     Sur_Neumann_Ele    : surface where non homogeneous Neumann boundary conditions
+     Sur_Neu_Ele        : surface where non homogeneous Neumann boundary conditions
                           (on n.d == epsilon n.Grad v) are imposed
      Sur_Electrodes_Ele : electrode regions */
 
   Vol_Ele = Region[ {Air, Diel1} ];
-  Sur_Neumann_Ele = Region[ {} ];
+  Sur_Neu_Ele = Region[ {} ];
   Sur_Electrodes_Ele = Region [ {Ground, Microstrip} ];
 }
 
@@ -117,7 +117,7 @@ Constraint {
 Group{
   /* The domain of definition lists all regions on which the field "v" is
      defined.*/
-  Dom_Hgrad_v_Ele =  Region[ {Vol_Ele, Sur_Neumann_Ele, Sur_Electrodes_Ele} ];
+  Dom_Hgrad_v_Ele =  Region[ {Vol_Ele, Sur_Neu_Ele, Sur_Electrodes_Ele} ];
 }
 
 FunctionSpace {
diff --git a/Magnetodynamics/Lib_MagStaDyn_av_2D_Cir.pro b/Magnetodynamics/Lib_MagStaDyn_av_2D_Cir.pro
index e0122eb1c43757fada989dfba4d3cf8d904e0f8d..145c95a2facbb957f2ed9655637d15d693c09e8c 100644
--- a/Magnetodynamics/Lib_MagStaDyn_av_2D_Cir.pro
+++ b/Magnetodynamics/Lib_MagStaDyn_av_2D_Cir.pro
@@ -16,24 +16,24 @@ DefineConstant[
   TimeFinal = 1/50, // final time (for time-domain simulations)
   DeltaTime = 1/500, // time step (for time-domain simulations)
   InterpolationOrder = 1 // finite element order
-  Val_Rint = 0, // interior radius of annulus shell transformation region (VolInf_Mag)
-  Val_Rext = 0 // exterior radius of annulus shell  transformation region (VolInf_Mag)
+  Val_Rint = 0, // interior radius of annulus shell transformation region (Vol_Inf_Mag)
+  Val_Rext = 0 // exterior radius of annulus shell  transformation region (Vol_Inf_Mag)
 ];
 
 Group {
   DefineGroup[
-    VolCC_Mag, // the non-conducting part
-    VolC_Mag, // the conducting part
-    VolV_Mag, // a moving conducting part, with invariant mesh
-    VolM_Mag, // permanent magnets
-    VolS0_Mag, // current source domain with imposed current densities js0
-    VolS_Mag, // current source domain with imposed current, imposed voltage or
-              // circuit coupling
-    VolInf_Mag, // annulus where a infinite shell transformation is applied
-    SurFluxTube_Mag, // boundary with Neumann BC
-    SurPerfect_Mag, // boundary of perfect conductors (i.e. non-meshed)
-    SurImped_Mag // boundary of conductors approximated by a surface impedance
-                 // (i.e. non-meshed)
+    Vol_CC_Mag, // the non-conducting part
+    Vol_C_Mag, // the conducting part
+    Vol_V_Mag, // a moving conducting part, with invariant mesh
+    Vol_M_Mag, // permanent magnets
+    Vol_S0_Mag, // current source domain with imposed current densities js0
+    Vol_S_Mag, // current source domain with imposed current, imposed voltage or
+               // circuit coupling
+    Vol_Inf_Mag, // annulus where a infinite shell transformation is applied
+    Sur_FluxTube_Mag, // boundary with Neumann BC
+    Sur_Perfect_Mag, // boundary of perfect conductors (i.e. non-meshed)
+    Sur_Imped_Mag // boundary of conductors approximated by a surface impedance
+                  // (i.e. non-meshed)
   ];
   If(Flag_CircuitCoupling)
     DefineGroup[
@@ -50,15 +50,15 @@ Group {
 Function {
   DefineFunction[
     nu, // reluctivity (in Vol_Mag)
-    sigma, // conductivity (in VolC_Mag and VolS_Mag)
-    br, // remanent magnetic flux density (in VolM_Mag)
-    js0, // source current density (in VolS0_Mag)
-    nxh, // n x magnetic field (on SurFluxTube_Mag)
-    Velocity, // velocity of moving part VolV_Moving
-    Ns, // number of turns (in VolS_Mag)
-    Sc, // cross-section of windings (in VolS_Mag)
+    sigma, // conductivity (in Vol_C_Mag and Vol_S_Mag)
+    br, // remanent magnetic flux density (in Vol_M_Mag)
+    js0, // source current density (in Vol_S0_Mag)
+    nxh, // n x magnetic field (on Sur_FluxTube_Mag)
+    Velocity, // velocity of moving part Vol_V_Mag
+    Ns, // number of turns (in Vol_S_Mag)
+    Sc, // cross-section of windings (in Vol_S_Mag)
     CoefGeos, // geometrical coefficient for 2D or 2D axi model
-    Ysur // surface admittance (inverse of surface impedance Zsur) on SurImped_Mag
+    Ysur // surface admittance (inverse of surface impedance Zsur) on Sur_Imped_Mag
   ];
   If(Flag_CircuitCoupling)
     DefineFunction[
@@ -73,9 +73,9 @@ Function {
 
 Group{
   // all volumes
-  Vol_Mag = Region[ {VolCC_Mag, VolC_Mag, VolV_Mag, VolM_Mag, VolS0_Mag, VolS_Mag} ];
+  Vol_Mag = Region[ {Vol_CC_Mag, Vol_C_Mag, Vol_V_Mag, Vol_M_Mag, Vol_S0_Mag, Vol_S_Mag} ];
   // all volumes + surfaces on which integrals will be computed
-  VolWithSur_Mag = Region[ {Vol_Mag, SurFluxTube_Mag, SurPerfect_Mag, SurImped_Mag} ];
+  Dom_Mag = Region[ {Vol_Mag, Sur_FluxTube_Mag, Sur_Perfect_Mag, Sur_Imped_Mag} ];
   If(Flag_CircuitCoupling)
     // all circuit impedances
     DomainZ_Cir = Region[ {Resistance_Cir, Inductance_Cir, Capacitance_Cir} ];
@@ -89,7 +89,7 @@ Group{
 Jacobian {
   { Name Vol;
     Case {
-      { Region VolInf_Mag ;
+      { Region Vol_Inf_Mag ;
         Jacobian VolSphShell {Val_Rint, Val_Rext} ; }
       { Region All; Jacobian Vol; }
     }
@@ -127,11 +127,11 @@ FunctionSpace {
       // \vec{a}(x) = \sum_{n \in N(Domain)} a_n \vec{s}_n(x)
       //   without nodes on perfect conductors (where a is constant)
       { Name s_n; NameOfCoef a_n; Function BF_PerpendicularEdge;
-        Support VolWithSur_Mag; Entity NodesOf[All, Not SurPerfect_Mag]; }
+        Support Dom_Mag; Entity NodesOf[All, Not Sur_Perfect_Mag]; }
 
       // global basis function on boundary of perfect conductors
       { Name s_skin; NameOfCoef a_skin; Function BF_GroupOfPerpendicularEdges;
-        Support VolWithSur_Mag; Entity GroupsOfNodesOf[SurPerfect_Mag]; }
+        Support Dom_Mag; Entity GroupsOfNodesOf[Sur_Perfect_Mag]; }
 
       // additional basis functions for 2nd order interpolation
       If(InterpolationOrder == 2)
@@ -164,8 +164,8 @@ FunctionSpace {
     BasisFunction {
       { Name sr; NameOfCoef ur; Function BF_RegionZ;
         // constant vector (over the region) with nonzero z-component only
-        Support Region[{VolC_Mag, SurImped_Mag}];
-        Entity Region[{VolC_Mag, SurImped_Mag}]; }
+        Support Region[{Vol_C_Mag, Sur_Imped_Mag}];
+        Entity Region[{Vol_C_Mag, Sur_Imped_Mag}]; }
     }
     GlobalQuantity {
       { Name U; Type AliasOf; NameOfCoef ur; }
@@ -183,7 +183,7 @@ FunctionSpace {
   { Name Hregion_i_2D; Type Vector;
     BasisFunction {
       { Name sr; NameOfCoef ir; Function BF_RegionZ;
-        Support VolS_Mag; Entity VolS_Mag; }
+        Support Vol_S_Mag; Entity Vol_S_Mag; }
     }
     GlobalQuantity {
       { Name Is; Type AliasOf; NameOfCoef ir; }
@@ -233,16 +233,16 @@ Formulation {
         In Vol_Mag; Jacobian Vol; Integration Gauss_v; }
 
       Integral { [ -nu[] * br[] , {d a} ];
-        In VolM_Mag; Jacobian Vol; Integration Gauss_v; }
+        In Vol_M_Mag; Jacobian Vol; Integration Gauss_v; }
 
       Integral { [ -js0[] , {a} ];
-        In VolS0_Mag; Jacobian Vol; Integration Gauss_v; }
+        In Vol_S0_Mag; Jacobian Vol; Integration Gauss_v; }
 
       Integral { [ - (js0[]*Vector[0,0,1]) * Dof{ir} , {a} ];
-        In VolS_Mag; Jacobian Vol; Integration Gauss_v; }
+        In Vol_S_Mag; Jacobian Vol; Integration Gauss_v; }
 
       Integral { [ nxh[] , {a} ];
-        In SurFluxTube_Mag; Jacobian Sur; Integration Gauss_v; }
+        In Sur_FluxTube_Mag; Jacobian Sur; Integration Gauss_v; }
     }
   }
 }
@@ -272,55 +272,55 @@ Formulation {
       Integral { [ nu[] * Dof{d a} , {d a} ];
         In Vol_Mag; Jacobian Vol; Integration Gauss_v; }
       Integral { [ -nu[] * br[] , {d a} ];
-        In VolM_Mag; Jacobian Vol; Integration Gauss_v; }
+        In Vol_M_Mag; Jacobian Vol; Integration Gauss_v; }
 
       // Electric field e = -Dt[{a}]-{ur},
-      // with {ur} = Grad v constant in each region of VolC
+      // with {ur} = Grad v constant in each region of Vol_C_Mag
       Integral { DtDof [ sigma[] * Dof{a} , {a} ];
-        In VolC_Mag; Jacobian Vol; Integration Gauss_v; }
+        In Vol_C_Mag; Jacobian Vol; Integration Gauss_v; }
       Integral { [ sigma[] * Dof{ur} / CoefGeos[] , {a} ];
-        In VolC_Mag; Jacobian Vol; Integration Gauss_v; }
+        In Vol_C_Mag; Jacobian Vol; Integration Gauss_v; }
 
       Integral { [ - sigma[] * (Velocity[] /\ Dof{d a}) , {a} ];
-        In VolV_Mag; Jacobian Vol; Integration Gauss_v; }
+        In Vol_V_Mag; Jacobian Vol; Integration Gauss_v; }
 
       Integral { [ -js0[] , {a} ];
-        In VolS0_Mag; Jacobian Vol; Integration Gauss_v; }
+        In Vol_S0_Mag; Jacobian Vol; Integration Gauss_v; }
 
       Integral { [ nxh[] , {a} ];
-        In SurFluxTube_Mag; Jacobian Sur; Integration Gauss_v; }
+        In Sur_FluxTube_Mag; Jacobian Sur; Integration Gauss_v; }
 
       Integral { DtDof [  Ysur[] * Dof{a} , {a} ];
-        In SurImped_Mag; Jacobian Sur; Integration Gauss_v; }
+        In Sur_Imped_Mag; Jacobian Sur; Integration Gauss_v; }
       Integral { [ Ysur[] * Dof{ur} / CoefGeos[] , {a} ];
-        In SurImped_Mag; Jacobian Sur; Integration Gauss_v; }
+        In Sur_Imped_Mag; Jacobian Sur; Integration Gauss_v; }
 
       // When {ur} act as a test function, one obtains the circuits relations,
-      // relating the voltage and the current of each region in VolC
+      // relating the voltage and the current of each region in Vol_C_Mag
       Integral { DtDof [ sigma[] * Dof{a} , {ur} ];
-        In VolC_Mag; Jacobian Vol; Integration Gauss_v; }
+        In Vol_C_Mag; Jacobian Vol; Integration Gauss_v; }
       Integral { [ sigma[] * Dof{ur} / CoefGeos[] , {ur} ];
-        In VolC_Mag; Jacobian Vol; Integration Gauss_v; }
-      GlobalTerm { [ Dof{I} *(CoefGeos[]/Fabs[CoefGeos[]]) , {U} ]; In VolC_Mag; }
+        In Vol_C_Mag; Jacobian Vol; Integration Gauss_v; }
+      GlobalTerm { [ Dof{I} *(CoefGeos[]/Fabs[CoefGeos[]]) , {U} ]; In Vol_C_Mag; }
 
       Integral { DtDof [ Ysur[] * Dof{a} , {ur} ];
-        In SurImped_Mag; Jacobian Sur; Integration Gauss_v; }
+        In Sur_Imped_Mag; Jacobian Sur; Integration Gauss_v; }
       Integral { [ Ysur[] * Dof{ur} / CoefGeos[] , {ur} ];
-        In SurImped_Mag; Jacobian Sur; Integration Gauss_v; }
-      GlobalTerm { [ Dof{I} *(CoefGeos[]/Fabs[CoefGeos[]]) , {U} ]; In SurImped_Mag; }
+        In Sur_Imped_Mag; Jacobian Sur; Integration Gauss_v; }
+      GlobalTerm { [ Dof{I} *(CoefGeos[]/Fabs[CoefGeos[]]) , {U} ]; In Sur_Imped_Mag; }
 
       // js[0] should be of the form: Ns[]/Sc[] * Vector[0,0,1]
       Integral { [ - (js0[]*Vector[0,0,1]) * Dof{ir} , {a} ];
-        In VolS_Mag; Jacobian Vol; Integration Gauss_v; }
+        In Vol_S_Mag; Jacobian Vol; Integration Gauss_v; }
 
       Integral { DtDof [ Ns[]/Sc[] * Dof{a} , {ir} ];
-        In VolS_Mag; Jacobian Vol; Integration Gauss_v; }
+        In Vol_S_Mag; Jacobian Vol; Integration Gauss_v; }
       Integral { [ Ns[]/Sc[] / sigma[] * (js0[]*Vector[0,0,1]) * Dof{ir} , {ir} ];
-        In VolS_Mag; Jacobian Vol; Integration Gauss_v; }
-      GlobalTerm { [ Dof{Us} / CoefGeos[] , {Is} ]; In VolS_Mag; }
+        In Vol_S_Mag; Jacobian Vol; Integration Gauss_v; }
+      GlobalTerm { [ Dof{Us} / CoefGeos[] , {Is} ]; In Vol_S_Mag; }
       // Attention: CoefGeo[.] = 2*Pi for Axi
 
-      GlobalTerm { [ -Dof{I_perfect} , {A_floating} ]; In SurPerfect_Mag; }
+      GlobalTerm { [ -Dof{I_perfect} , {A_floating} ]; In Sur_Perfect_Mag; }
 
       If(Flag_CircuitCoupling)
 	GlobalTerm { NeverDt[ Dof{Uz} , {Iz} ]; In Resistance_Cir; }
@@ -339,8 +339,8 @@ Formulation {
 
 	GlobalEquation {
 	  Type Network; NameOfConstraint ElectricalCircuit;
-	  { Node {I};  Loop {U};  Equation {I};  In VolC_Mag; }
-	  { Node {Is}; Loop {Us}; Equation {Us}; In VolS_Mag; }
+	  { Node {I};  Loop {U};  Equation {I};  In Vol_C_Mag; }
+	  { Node {Is}; Loop {Us}; Equation {Us}; In Vol_S_Mag; }
 	  { Node {Iz}; Loop {Uz}; Equation {Uz}; In Domain_Cir; }
 	}
       EndIf
@@ -392,45 +392,45 @@ PostProcessing {
       { Name b; Value { Term { [ {d a} ]; In Vol_Mag; Jacobian Vol; } } }
       { Name h; Value {
           Term { [ nu[] * {d a} ]; In Vol_Mag; Jacobian Vol; }
-          Term { [ -nu[] * br[] ]; In VolM_Mag; Jacobian Vol; }
+          Term { [ -nu[] * br[] ]; In Vol_M_Mag; Jacobian Vol; }
         }
       }
       { Name js; Value {
-          Term { [ js0[] ]; In VolS0_Mag; Jacobian Vol; }
-          Term { [  (js0[]*Vector[0,0,1])*{ir} ]; In VolS_Mag; Jacobian Vol; }
+          Term { [ js0[] ]; In Vol_S0_Mag; Jacobian Vol; }
+          Term { [  (js0[]*Vector[0,0,1])*{ir} ]; In Vol_S_Mag; Jacobian Vol; }
           Term { [ Vector[0,0,0] ]; In Vol_Mag; Jacobian Vol; } // to force a vector result out of sources
         }
       }
       { Name j;
         // Only correct in MagDyn
         Value {
-          Term { [ -sigma[] * (Dt[{a}]+{ur}/CoefGeos[]) ]; In VolC_Mag; Jacobian Vol; }
-          Term { [ js0[] ]; In VolS0_Mag; Jacobian Vol; }
-          Term { [  (js0[]*Vector[0,0,1])*{ir} ]; In VolS_Mag; Jacobian Vol; }
+          Term { [ -sigma[] * (Dt[{a}]+{ur}/CoefGeos[]) ]; In Vol_C_Mag; Jacobian Vol; }
+          Term { [ js0[] ]; In Vol_S0_Mag; Jacobian Vol; }
+          Term { [  (js0[]*Vector[0,0,1])*{ir} ]; In Vol_S_Mag; Jacobian Vol; }
           Term { [ Vector[0,0,0] ]; In Vol_Mag; Jacobian Vol; }
           // Current density in A/m
-          Term { [ -Ysur[] * (Dt[{a}]+{ur}/CoefGeos[]) ]; In SurImped_Mag; Jacobian Sur; }
+          Term { [ -Ysur[] * (Dt[{a}]+{ur}/CoefGeos[]) ]; In Sur_Imped_Mag; Jacobian Sur; }
         }
       }
 
       { Name JouleLosses;
         Value {
           Integral { [ CoefPower * sigma[]*SquNorm[Dt[{a}]+{ur}/CoefGeos[]] ];
-            In VolC_Mag; Jacobian Vol; Integration Gauss_v; }
+            In Vol_C_Mag; Jacobian Vol; Integration Gauss_v; }
           Integral { [ CoefPower * 1./sigma[]*SquNorm[js0[]] ];
-            In VolS0_Mag; Jacobian Vol; Integration Gauss_v; }
+            In Vol_S0_Mag; Jacobian Vol; Integration Gauss_v; }
 
 	  Integral { [ CoefPower * 1./sigma[]*SquNorm[(js0[]*Vector[0,0,1])*{ir}] ];
-            In VolS_Mag; Jacobian Vol; Integration Gauss_v; }
+            In Vol_S_Mag; Jacobian Vol; Integration Gauss_v; }
 
           Integral { [ CoefPower * Ysur[]*SquNorm[Dt[{a}]+{ur}/CoefGeos[]] ];
-            In SurImped_Mag; Jacobian Sur; Integration Gauss_v; }
+            In Sur_Imped_Mag; Jacobian Sur; Integration Gauss_v; }
 	}
       }
 
       { Name U; Value {
-          Term { [ {U} ]; In VolC_Mag; }
-          Term { [ {Us} ]; In VolS_Mag; }
+          Term { [ {U} ]; In Vol_C_Mag; }
+          Term { [ {Us} ]; In Vol_S_Mag; }
           If(Flag_CircuitCoupling)
             Term { [ {Uz} ]; In Domain_Cir; }
           EndIf
@@ -438,8 +438,8 @@ PostProcessing {
       }
 
       { Name I; Value {
-          Term { [ {I} ]; In VolC_Mag; }
-          Term { [ {Is} ]; In VolS_Mag; }
+          Term { [ {I} ]; In Vol_C_Mag; }
+          Term { [ {Is} ]; In Vol_S_Mag; }
           If(Flag_CircuitCoupling)
             Term { [ {Iz} ]; In Domain_Cir; }
           EndIf
@@ -459,7 +459,8 @@ PostProcessing {
       { Name h; Value { Term { [ nu[] * {d a} ]; In Vol_Mag; Jacobian Vol; } } }
       { Name j;
         Value {
-          Term { [ js0[] ]; In VolS0_Mag; Jacobian Vol; }
+          Term { [ js0[] ]; In Vol_S0_Mag; Jacobian Vol; }
+          Term { [ (js0[]*Vector[0,0,1])*{ir} ]; In Vol_S_Mag; Jacobian Vol; }
           Term { [ Vector[0,0,0] ]; In Vol_Mag; Jacobian Vol; }
         }
       }
diff --git a/Magnetodynamics/electromagnet.pro b/Magnetodynamics/electromagnet.pro
index 1daf5af9e96f2708a84fcd894622a47bc62435d9..351d0cce2a1229242b101da3dde96aba86518bdb 100644
--- a/Magnetodynamics/electromagnet.pro
+++ b/Magnetodynamics/electromagnet.pro
@@ -29,10 +29,10 @@ Group {
 
   // Abstract regions used in the "Lib_MagStaDyn_av_2D_Cir.pro" template file
   // that is included below:
-  VolCC_Mag = Region[{Air, AirInf}]; // Non-conducting regions
-  VolC_Mag = Region[{Core}]; // Massive conducting regions
-  VolS_Mag = Region[{Ind}]; // Stranded conductors, i.e., coils
-  VolInf_Mag = Region[{AirInf}]; // Annulus for infinite shell transformation
+  Vol_CC_Mag = Region[{Air, AirInf}]; // Non-conducting regions
+  Vol_C_Mag = Region[{Core}]; // Massive conducting regions
+  Vol_S_Mag = Region[{Ind}]; // Stranded conductors, i.e., coils
+  Vol_Inf_Mag = Region[{AirInf}]; // Annulus for infinite shell transformation
   Val_Rint = rInt; Val_Rext = rExt; // Interior and exterior radii of annulus
 }
 
diff --git a/Magnetodynamics/transfo.pro b/Magnetodynamics/transfo.pro
index 88f0dba59bba74195588d44d190dea40f8e1ba23..0feabec89c9cd9b5a3cc85862a2184ac4924f46c 100644
--- a/Magnetodynamics/transfo.pro
+++ b/Magnetodynamics/transfo.pro
@@ -32,20 +32,20 @@ Group {
   template file included below; the regions are first intialized as empty,
   before being filled with physical groups */
 
-  VolCC_Mag = Region[{}]; // Non-conducting regions
-  VolC_Mag = Region[{}]; // Massive conductors
-  VolS_Mag = Region[{}]; // Stranded conductors, i.e., coils
+  Vol_CC_Mag = Region[{}]; // Non-conducting regions
+  Vol_C_Mag = Region[{}]; // Massive conductors
+  Vol_S_Mag = Region[{}]; // Stranded conductors, i.e., coils
 
   // air physical groups
   Air = Region[{AIR_WINDOW, AIR_EXT}];
-  VolCC_Mag += Region[Air];
+  Vol_CC_Mag += Region[Air];
 
   // exterior boundary
   Sur_Air_Ext = Region[{SUR_AIR_EXT}];
 
   // magnetic core of the transformer, assumed to be non-conducting
   Core = Region[CORE];
-  VolCC_Mag += Region[Core];
+  Vol_CC_Mag += Region[Core];
 
   Coil_1_P = Region[COIL_1_PLUS];
   Coil_1_M = Region[COIL_1_MINUS];
@@ -58,10 +58,10 @@ Group {
   Coils = Region[{Coil_1, Coil_2}];
 
   If (type_Conds == 1)
-    VolC_Mag += Region[{Coils}];
+    Vol_C_Mag += Region[{Coils}];
   ElseIf (type_Conds == 2)
-    VolS_Mag += Region[{Coils}];
-    VolCC_Mag += Region[{Coils}];
+    Vol_S_Mag += Region[{Coils}];
+    Vol_CC_Mag += Region[{Coils}];
   EndIf
 }
 
@@ -219,7 +219,7 @@ Include "Lib_MagStaDyn_av_2D_Cir.pro";
 PostOperation {
   { Name Map_a; NameOfPostProcessing MagDyn_a_2D;
     Operation {
-      Print[ j, OnElementsOf Region[{VolC_Mag, VolS_Mag}], Format Gmsh, File "j.pos" ];
+      Print[ j, OnElementsOf Region[{Vol_C_Mag, Vol_S_Mag}], Format Gmsh, File "j.pos" ];
       Print[ b, OnElementsOf Vol_Mag, Format Gmsh, File "b.pos" ];
       Print[ az, OnElementsOf Vol_Mag, Format Gmsh, File "az.pos" ];
 
diff --git a/Magnetostatics/electromagnet.pro b/Magnetostatics/electromagnet.pro
index 1e1c1c4348eba7d9fb4621b0c9d7fe4d69c121d2..37293eeac3c5c834919a7464d5f62e4f377afcf2 100644
--- a/Magnetostatics/electromagnet.pro
+++ b/Magnetostatics/electromagnet.pro
@@ -3,7 +3,7 @@
 
    Features:
    - Infinite ring geometrical transformation
-   - Parameters shared by Gmsh and GetDp, and Onelab parameters
+   - Parameters shared by Gmsh and GetDP, and ONELAB parameters
    - FunctionSpaces for the 2D vector potential formulation
 
    To compute the solution in a terminal:
@@ -15,35 +15,43 @@
        Run (button at the bottom of the left panel)
    ------------------------------------------------------------------- */
 
-/* Electromagnetic fields expand to infinity.
-   The corresponding boundary condition can be imposed rigorously
-   by means of a gometrical transformation that maps a ring (or shell) of finite elements
-   to the complementary of its interior.
-   As this is a mere geometric transformation,
-   it is enough in the model description to attribute a special jacobian
-   to the ring region ("AirInf"). See Jacobian{} section below.
-   With this information, GetDP is able to deal with the correct transformation
-   of all quantities involved in the model.
-
-   The special jacobian "VolSphShell" has parameters.
-   There are 2 parameters in this case, "Val_Rint" and "Val_Rext",
-   which represent the inner and outer radii of the transformed ring region
-   and whose value must match those used
-   in the geometrical description of the model (.geo file).
-   This is a typical case where Gmsh and GetDP must consistently share parameter values.
-   To ensure consistency in all cases, common parameters are defined
-   is a specific file "electromagnet_common.pro",
-   which is included in both the .geo and .pro file of the model.
-
-   Besides sharing parameters between Gmsh and GetDP,
-   it is also useful to share some parameters (not all) with the user of the model,
-   i.e., to make them editable in the GUI before running the model.
-   Such variables are called Onelab variables (because the sharing mechanism
-   between the model and the GUI uses the Onelab interface).
-   Onelab parameters are defined with a "DefineNumber" statement,
-   which can be invoked in the .geo, .pro, or _common.pro files.
- */
-
+/* Electromagnetic fields expand to infinity. The corresponding boundary
+   condition can be imposed rigorously by means of a gometrical transformation
+   that maps a ring (or shell) of finite elements to the complementary of its
+   interior.  As this is a mere geometric transformation, it is enough in the
+   model description to attribute a special Jacobian to the ring region
+   ("AirInf") - see the "Jacobian" section below.  With this information, GetDP
+   is able to deal with the correct transformation of all quantities involved in
+   the model.
+
+   The special Jacobian "VolSphShell" takes 2 parameters in this case,
+   "Val_Rint" and "Val_Rext", which represent the inner and outer radii of the
+   transformed ring region and whose value must match those used in the
+   geometrical description of the model (.geo file).  This is a typical case
+   where Gmsh and GetDP must consistently share parameter values.  To ensure
+   consistency in all cases, common parameters are defined is a specific file
+   "electromagnet_common.pro", which is included in both the .geo and .pro file
+   of the model.
+
+   Besides sharing parameters between Gmsh and GetDP, it is also useful to share
+   some parameters (not all) with the user of the model, i.e., to make them
+   editable in the GUI before running the model.  Such variables are called
+   ONELAB variables (because the sharing mechanism between the model and the GUI
+   uses the ONELAB interface).  ONELAB parameters are defined with a
+   "DefineNumber" statement, which can be invoked in the .geo and .pro files.
+
+   This model computes the static magnetic field produced by a DC current. This
+   corresponds to a "magnetostatic" physical model, obtained by combining the
+   time-invariant Maxwell-Ampere equation (Curl h = js, with h the magnetic
+   field and js the source current density) with Gauss' law (Div b = 0, with b
+   the magnetic flux density) and the magnetic constitutive law (b = mu h, with
+   mu the magnetic permeability).
+
+   Since Div b = 0, b can be derived from a vector magnetic potential a, such
+   that b = Curl a. Plugging this potential in Maxwell-Ampere's law and using
+   the constitutive law leads to a vector Poisson equation in terms of the
+   magnetic vector potential: Curl(nu Curl a) = js, where nu = 1/mu is
+   the reluctivity. */
 
 Group {
   // Physical regions:
@@ -54,25 +62,24 @@ Group {
   Surface_bn0 = Region[ 1101 ];
   Surface_Inf = Region[ 1102 ];
 
-
   /* Abstract regions :
-     The purpose of abstract regions is to allow a generic definition of
-     the FunctionSpace, Formulation and PostProcessing fields
-     with no reference to model-specific Physical regions.
-     We will show in a later tutorial how abstract formulations can then be isolated
-     in geometry independent template files, thanks to an appropriate declaration mechanism
-     (using DefineConstant[], DefineGroup[] and DefineFunction[]).
+     The purpose of abstract regions is to allow a generic definition of the
+     FunctionSpace, Formulation and PostProcessing fields with no reference to
+     model-specific Physical regions.  We will show in a later tutorial how
+     abstract formulations can then be isolated in geometry independent template
+     files, thanks to an appropriate declaration mechanism (using
+     DefineConstant[], DefineGroup[] and DefineFunction[]).
 
      The abstract regions in this model have the following interpretation:
-     - Vol_Nu_Mag  = region where the term [ nu[] * Dof{d a} , {d a} ] is assembled
-     - Vol_Js_Mag  = region where the term [ - Dof{js} , {a} ] is assembled
-     - Vol_Inf_Mag = region where the infinite ring geometric transformation is applied
-     - Sur_Dir_Mag = Homogeneous Dirichlet part of the model's boundary;
-     - Sur_Neu_Mag = Homogeneous Neumann part of the model's boundary;
+     - Vol_Mag     : full volume domain
+     - Vol_S_Mag   : region where the current source js is defined
+     - Vol_Inf_Mag : region where the infinite ring geometric transformation is applied
+     - Sur_Dir_Mag : homogeneous Dirichlet part of the model boundary
+     - Sur_Neu_Mag : homogeneous Neumann part of the model boundary
   */
-  Vol_Nu_Mag  = Region[ {Air, AirInf, Core, Ind} ];
-  Vol_Js_Mag  = Region[ Ind ];
-  Vol_Inf_Mag = Region[ {AirInf} ];
+  Vol_Mag     = Region[ {Air, AirInf, Core, Ind} ];
+  Vol_S_Mag   = Region[ Ind ];
+  Vol_Inf_Mag = Region[ AirInf ];
   Sur_Dir_Mag = Region[ {Surface_bn0, Surface_Inf} ];
   Sur_Neu_Mag = Region[ {Surface_ht0} ];
 }
@@ -88,7 +95,7 @@ Function {
   NbTurns = 1000 ;
   Current = DefineNumber[0.01, Name "Model parameters/Current",
 			 Help "Current injected in coil [A]"];
-  Js_fct[ Ind ] = -NbTurns*Current/SurfaceArea[];
+  js_fct[ Ind ] = -NbTurns*Current/SurfaceArea[];
   /* The minus sign is to have the current in -e_z direction,
      so that the magnetic induction field is in +e_y direction */
 }
@@ -104,22 +111,22 @@ Function {
    "Hcurl_a_Mag_2D" and "Hregion_j_Mag_2D" as they are defined below.
 
    The function space "Hregion_j_Mag_2D" provides one basis function,
-   and hence one degree of freedom, per physical region in the abstract region "Vol_Js_Mag".
+   and hence one degree of freedom, per physical region in the abstract region "Vol_S_Mag".
    The constraint "SourceCurrentDensityZ" fixes all these dofs,
    so the FunctionSpace "Hregion_j_Mag_2D" is fully fixed and has no FE unknowns.
    One could thus have replaced it by a simple function
    and the Integral term would have been
 
-   Integral { [ Vector[ 0,0,-Js_fct[] ] , {a} ]; In Vol_Js_Mag;
+   Integral { [ Vector[ 0,0,-js_fct[] ] , {a} ]; In Vol_S_Mag;
               Jacobian Vol; Integration Int; }
 
    instead of
 
-   Integral { [ - Dof{js} , {a} ]; In Vol_Js_Mag;
+   Integral { [ - Dof{js} , {a} ]; In Vol_S_Mag;
                Jacobian Vol; Integration Int; }
 
    Thechosen implementation below is however more effeicient
-   as it avoids evaluating repeatedly the function Js_fct[] during assembly.
+   as it avoids evaluating repeatedly the function js_fct[] during assembly.
  */
 
 
@@ -131,13 +138,13 @@ Constraint {
   }
   { Name SourceCurrentDensityZ;
     Case {
-      { Region Vol_Js_Mag ; Value Js_fct[]; }
+      { Region Vol_S_Mag ; Value js_fct[]; }
     }
   }
 }
 
 Group {
-  Dom_Hcurl_a_Mag_2D = Region[ {Vol_Nu_Mag, Sur_Neu_Mag} ];
+  Dom_Hcurl_a_Mag_2D = Region[ {Vol_Mag, Sur_Neu_Mag} ];
 }
 FunctionSpace {
   { Name Hcurl_a_Mag_2D; Type Form1P; // Magnetic vector potential A
@@ -154,7 +161,7 @@ FunctionSpace {
   { Name Hregion_j_Mag_2D; Type Vector; // Electric current density Js
     BasisFunction {
       { Name sr; NameOfCoef jsr; Function BF_RegionZ;
-        Support Vol_Js_Mag; Entity Vol_Js_Mag; }
+        Support Vol_S_Mag; Entity Vol_S_Mag; }
     }
     Constraint {
       { NameOfCoef jsr; EntityType Region;
@@ -193,9 +200,9 @@ Formulation {
       { Name js; Type Local; NameOfSpace Hregion_j_Mag_2D; }
     }
     Equation {
-      Integral { [ nu[] * Dof{d a} , {d a} ]; In Vol_Nu_Mag;
+      Integral { [ nu[] * Dof{d a} , {d a} ]; In Vol_Mag;
                  Jacobian Vol; Integration Int; }
-      Integral { [ -Dof{js} , {a} ]; In Vol_Js_Mag;
+      Integral { [ -Dof{js} , {a} ]; In Vol_S_Mag;
                  Jacobian Vol; Integration Int; }
     }
   }