rename authored by Christophe Geuzaine's avatar Christophe Geuzaine
<table>
<tr>
<th colspan="2">Optimized Schwarz domain decomposition methods for time-harmonic wave problems</th>
</tr>
<tr>
<td style="text-align:center"><img src="GetDDM_screenshot1.png" width=100%></td>
<td style="text-align:center"><img src="GetDDM_screenshot2.png" width=100%></td>
</tr>
<tr>
<th colspan="2">Browse <a href="https://gitlab.onelab.info/doc/models/tree/master/GetDDM">model files</a>
&mdash; Download <a href="http://onelab.info/files/GetDDM.zip">zip archive</a></th>
</tr>
</table>
## Quick start
To run the models, open `main.pro` with Gmsh.
(For parallel computations you will have to [recompile GetDP with MPI
support](https://gitlab.onelab.info/getdp/getdp/wikis/GetDP-compilation). Sample
[SLURM](https://gitlab.onelab.info/doc/models/tree/master/DDMWaves/run_slurm.sh)
and [PBS
scripts](https://gitlab.onelab.info/doc/models/tree/master/DDMWaves/run_pbs.sh)
are provided to to run on HPC clusters.)
## Additional information
The formulations implement non-overlapping Schwarz domain decomposition methods
for time-harmonic acoustic and electromagnetic wave problems. Several families
of transmission conditions are implemented: zeroth- and second-order optimized
conditions [1-6], Padé-localized square-root conditions [7-8] and PML conditions
[9]. Several variants of the double-sweep preconditioner [9] are also
implemented.
For more information about these methods as well as the implementation, please
refer to [GetDDM: an Open Framework for Testing Optimized Schwarz Methods for
Time-Harmonic Wave
Problems](http://www.montefiore.ulg.ac.be/~geuzaine/preprints/getddm_preprint.pdf)
[10].
## References
1. B. Després, Méthodes de Décomposition de Domaine pour les Problèmes de
Propagation d'Ondes en Régime Harmonique. Le Théorème de Borg pour l'Equation de
Hill Vectorielle, PhD Thesis, Paris VI University, France, 1991.
2. B. Després, P. Joly and J. Roberts, A domain decomposition method for the
harmonic Maxwell equations, Iterative methods in linear algebra (Brussels,
1991), pp. 475-484, North-Holland, 1992.
3. M. Gander, F. Magoulès and F. Nataf, Optimized Schwarz methods without
overlap for the Helmholtz equation}, SIAM Journal on Scientific Computing,
24(1), pp. 38-60, 2002.
4. V. Dolean, M. Gander and L. Gerardo-Giorda, Optimized Schwarz methods for
Maxwell's equations, SIAM Journal on Scientific Computing, 31(3), pp. 2193-2213,
2009.
5. A. Bendali and Y. Boubendir, Non-Overlapping Domain Decomposition Method for
a Nodal Finite Element Method, Numerische Mathematik 103(4), pp.515-537, (2006).
6. V. Rawat and J.-F. Lee, Nonoverlapping Domain Decomposition with Second Order
Transmission Condition for the Time-Harmonic Maxwell's Equations, SIAM Journal
on Scientific Computing, 32(6), pp. 3584-3603, 2010.
7. Y. Boubendir, X. Antoine and C. Geuzaine. [A quasi-optimal non-overlapping
domain decomposition algorithm for the Helmholtz
equation](http://www.montefiore.ulg.ac.be/~geuzaine/preprints/ddm_helmholtz_preprint.pdf).
Journal of Computational Physics 231 (2), 262-280, 2012.
8. M. El Bouajaji, X. Antoine and C. Geuzaine. [Approximate local
magnetic-to-electric surface operators for time-harmonic Maxwell’s
equations](http://www.montefiore.ulg.ac.be/~geuzaine/preprints/osrc_maxwell_preprint.pdf).
Journal of Computational Physics 279 241-260, 2014.
9. A. Vion and C. Geuzaine. [Double sweep preconditioner for optimized Schwarz
methods applied to the Helmholtz
problem](http://www.montefiore.ulg.ac.be/~geuzaine/preprints/ddm_double_sweep_preprint.pdf).
Journal of Computational Physics 266, 171-190, 2014.
10. B. Thierry, A.Vion, S. Tournier, M. El Bouajaji, D. Colignon, N. Marsic,
X. Antoine, C. Geuzaine. [GetDDM: an Open Framework for Testing Optimized
Schwarz Methods for Time-Harmonic Wave
Problems](http://www.montefiore.ulg.ac.be/~geuzaine/preprints/getddm_preprint.pdf).
Computer Physics Communications 203, 309-330, 2016.
----
*Models developed by X. Antoine, Y. Boubendir, M. El Bouajaji, D. Colignon,
@geuzaine, @marsic, @thierry, S. Tournier and A. Vion. This work was
funded in part by the Belgian Science Policy (IAP P6/21 and P7/02), the Belgian
French Community (ARC 09/14-02), the Walloon Region (WIST3 No 1017086 ONELAB and
ALIZEES), the Agence Nationale pour la Recherche (ANR-09-BLAN-0057-01 MicroWave)
and the EADS Foundation (grant 089-1009-1006 High-BRID).*
\ No newline at end of file