... | ... | @@ -6,6 +6,7 @@ $$`\bm{\nabla}\cdot\mathbf{P}_m= \mathbf{0}\,.`$$ |
|
|
|
|
|
- Local material behavior for each constituent $`\alpha`$
|
|
|
$$`\mathbf{P}_m(t)= \bm{\mathfrak{P}}^\alpha\left(\mathbf{F}(t),\mathbf{Z}\right)\,.`$$
|
|
|
Note that nonlocal law, can be considered for all cases.
|
|
|
|
|
|
- Strain averaging theorem:
|
|
|
$$`\frac{1}{V_0}\int_{V_0} \mathbf{F}_m\,dV = \mathbf{F}_M\,.`$$
|
... | ... | @@ -27,8 +28,6 @@ We distinguish two cases: |
|
|
|
|
|
In nonLinearMechSolver, the treatments of the usual BC (force BC, displacement BC, ...) and microscopic BC (periodic, displacement, minimal kinematic, mixed BC) are diffrent and then distinished by the presence of a boolean **`nonLinearMechSolver::_microFlag`** (False by default). **`_microFlag=True`** if the micros-BC treatment is considered. The value of **`_microFlag`** can be modifed by one of following functions:
|
|
|
|
|
|
- **`nonLinearMechSolver::setMicroSolverFlag(flag)`** : to force **`_microFlag`** equal to **`flag`**
|
|
|
|
|
|
- **`nonLinearMechSolver::addMicroBC(microBC)`** : to force **`_microFlag = True`**
|
|
|
|
|
|
- **`nonLinearMechSolver::activateTest()`** : to force **`_microFlag = False`**
|
... | ... | |